JOURNAL OF COMPUTATIONAL PHYSICS139,343-358 (1998)
ARTICLE NO. CP975874

An Efficient ADI-Solver for Scattered Data
Problems with Global Smoothing

Erlend Argé’ and Angela Kunoth?

*Numerical Objects AS, Forskningsveien 1, P.O. Box 124, Blindern, N-0314 Oslo, Norway;
tInstitut fur Geometrie und Praktische Mathematik, RWTH Aachen,
Templergraben 55, 52056 Aachen, Germany
E-mail: sea@nobjects.com, kunoth@igpm.rwth-aachen.de

Received December 19, 1996; revised October 7, 1997

For the approximate representation of large data sets over a parameter domain
in R?, many geological and other applications require the construction of surfaces
which have minimal energy, i.e., minimal curvature. One way to achieve this is
by solving a fourth-order elliptic partial differential equation. Its discretization by
a difference scheme makes it particularly easy to incorporate (appropriate approx-
imations of) known data points. In this paper, we investigate the performance of
different solution methods for the resulting symmetric linear system of equations
since this is the most CPU-demanding step in the scattered data approximation pro-
cedure. Specifically, we test first the performance of a preconditioned conjugate
gradient method with an SSOR and an RILU preconditioner. However, since the
partial differential operator does not contain mixed derivatives, using an alternating-
direction-implicit scheme (ADI method) which has been employed successfully in
the past for second-order problems, together with a Cholesky factorization of the cor-
responding one-dimensional operators has also been tried for the problem at hand.
The computational studies that we have performed here show that for our prob-
lem an instationary ADI method is superior to the above-mentioned preconditioned
conjugate gradient solvers both with respect to work load and accuracy of the solu-
tion. For the fourth-order model problem considered in this paper, the instationary
ADI method with Wachspress parameters results in a number of iterations that is
essentially independent of the number of variables.1998 Academic Press
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1. INTRODUCTION

To represent surfaces approximating scattered data, many usersgriéfemctions
These are discrete functions defined on a grid overlapRiagRr? in the parameter domain
with equally spaced nodes in each coordinate direction calegldar grid. By using spline
interpolation methods as described, e.g. in [2], from the grid functions one can easily obt
continuous functions oR? for visualization and other purposes.

To generate a grid function on a given regular grid that approximates a large set
scattered data, a method consisting of three steps has been developed in [3]. In the
and second stages calleshularizationand approximation the grid function is assigned
function values at nodes lying in regions with high data density by a local approximatic
scheme. The last step, denoteddsyrapolation determines the remaining function values
of the grid function in a global fashion by minimizing its “curvature” (in a sense yet to be
made precise).

This method does not interpolate the given scattered data set. Its main area of applica
is rather in situations where there are large point sets that should be approximated anc
data should not be interpolated. Such data occurs in many applications, and the three-
procedure for scattered data approximation described above is used in several comme
products through the SINTEF Scattered Data Library (SISCAT) [5, 18]. One example of :
application area for this method is the construction of a geological surface over a bivari
regular grid, where the data is given on contours or seismic tracks.

Due to the typically large amount of resulting data, methods like using radial bas
functions (e.g., thin plate splines [16]) cannot be employed any more for the constructi
of a grid function having minimal energy. The extrapolation process given in [3] yield
to the problem of solving a fourth-order symmetric elliptic partial differential equation
This equation is discretized using a difference method which makes it particularly ea
to incorporate the scattered data conditions, leading to a large system of linear equati
Since the system matriR is symmetric, positive definite, and sparse, a natural choice t
solve the linear equations is to useamjugate gradient methd@G method). Unfortunately,
the convergence speed of this iterative method is disturbingly low due to its dependel
onthe spectral condition number@fvhich inthe present case is of ord@¢th—*), whereh is
the grid spacing. Therefore, preconditioning with the aim of reducing the condition numb
becomes an essential task, thus resulting irpteeonditioned conjugate gradient method
(PCG method). Here we have used two standard preconditioners in the PCG method wf
both reduce the condition number@ih—2). The first one is aBSOR preconditionavhich
is based on an additive decompositionRofThe second choice is thLU preconditioner
derived from an incomplete factorization Bfinto triangular matrices (see, e.g., [8 or 12].

However, it turns out in the computational studies that an instatioalieynating-
direction-implicit methodADI method) is superior to the above-mentioned PCG method:
for the present problem with respect to the overall amount of work and the reduced ert
In fact, the number of iterations for the ADI method grows very slowly as a function of th
number of variables which is not at all the case for the PCG schemes. In the ADI appro:
the matrixP is decomposed additively into its parts from the difference operators in eac
coordinate direction in the parameter domain. The iteration is based on alternatingly solv
the corresponding linear systems based on one-dimensional fourth-order prekbatig
(after reordering of nodes) by computing the inverses of tpes¢adiagonamatrices di-
rectly by means of Cholesky decomposition. A description of all these methods, althou
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only for second-order problems, together with convergence proofs can be found, e.g
[12].

The ADI method as described here has also been applied to linear systems arising
scattered data problems with discontinuities as developed in [4]. In this paper, we \
focus on a model problem capturing the main difficulties of the extrapolation proble
of the scattered data approximation method, and we will not consider the discontinui
here. First tests [20] indicate that the method still works well, even though one of the m
theoretical requirements, the commutativity condition (21) below of the difference operat
in each coordinate direction is violated.

This paper is structured as follows. In the next section, we briefly recall the regularizat
and approximation steps of the scattered data procedure from [3] and give a short revie
the extrapolation step. Based on some observations regarding the main difficulties in sol
the linear equations connected to the extrapolation step, we formulate a model proble
Section 3. In Section 4, we briefly discuss the preconditioned conjugate gradient metho
well as give a description of the stationary and instationary ADI methods and apply th
to the fourth-order problem at hand. In Section 5 we experiment numerically with the
solvers on the model problem in Section 3. Section 6 gives some concluding remarks.

2. REVIEW OF THE SCATTERED DATA METHOD

Following the ideas for the construction of grid functions in [3]{l&t, y«) € R? x R,kin
some finite index seK } be a given set of scattered data. Let furtBer= Q2 N (h1z x hyz)
be a grid with grid spacinfi, h, > 0, where2 is some bounded rectangular domain in
R?. We assume tha® contains the scattered poiris= (s, k € K}.

In theregularizationstep, a subsdd C G is determined by requiring that in a region
around eacky € D there are sufficiently many data points. The precise construction is tt
a density function describing the scattered data density at each panisimetermined.
Then the nodes iD are those irG where the density exceeds a certain threshold valu
For a discussion of the regularization step, see [14].

In theapproximatiorstep, a data s¢ta, z,) € R?> x R, a € D} is computed by the appli-
cation of some local approximation scheme. Choosing for eaetD a local approximation
operator depending on a relatively small subsef(sf, y«), k € K} in the neighborhood
of « then yields values for the grid function @ For this purpose, one may, e.g., employ
Shepard’s method [17] or a polynomial least squares approach, or use radial basis func
like thin plate splines [16].

In the extrapolationstep, the values od = G\ D are computed by employing a global
scheme for minimizing a measure of the curvature of the surface under the restrictiol
interpolating the values ob. The various point sets are shown in Fig. 1.

Minimizing the curvature of a continuous functiorover a bivariate domaif at each
point of u in every direction leads to considering the problem

min | (u)
ueC?(Q)

atr = 0, where

T 2 2
I(u):// w(¢>)<%u(x+rcos¢,y+rsin¢)> dop dx dy. (1)
QJo
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FIG. 1. This figure explains the notation used to define the different sets of points. The entire grid is denot
by G, the scattered data points, marked by’ ‘are denoted by5, the grid points located close to the data points
are denoted by and are marked by™,” and finally the set of grid points not close enough to any data point are
unmarked and denoted by = G\D.

Herew(¢), 0 < ¢ < =, is some weight distribution. We note that with= 1 the Euler
equation for (1) is essentially the same as the Euler equation for the thin plate spli
functional [10],

(W) = / (U2 + 2(Uxy)? + (Uyy)?) dx dy; @
Q

where we abbreviatd, = df/dx, f, := 9f/dy for any sufficiently smooth function
f = f(x,y). Thus, (1) can be viewed as a generalization of (2).
For our purpose we choose

w(P) = 0(@) + dx/2(¢),

wheredy is the delta distribution. Thus, the functional becomes
| () = / (Un)? + (Uyy)?) dx dy ©)
Q

which means that the curvature is minimized along xhand y-axes of the parameter
domain. This functional is very well suited for the modeling of faulted geological surface
[4] and, as will see later on, leads to a system of linear algebraic equations which :
amenable to being solved by an ADI method. For more general weighee [13].
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The minimization ofl (u) as defined in (3) leads to the Euler equations
/ (UxxVxx + Uyyvyy) dx dy= 0 4)
Q

for any bounded test function € C?(Q). One approach to solve (4) would be to employ
finite elements in such a Galerkin-type formulation. We will, however, continue to work
the grid setting and compute the valueslbmlirectly through a finite difference approach
since this makes it easy to incorporate the known valuelS.on

Assuming now sufficiently high smoothnesswpfwe can integrate Eq. (4) by parts to
obtain

/ (uXXXX + uyyyy)v dX dy= 0 (5)
Q

Here, we assume either thatsatisfies the natural boundary conditions (i.e., second- ar
third-order normal derivatives vanish) or that the test function is restricted to some apy
priate subspace @ (Q). Of course, without posing any further conditionsigrany cubic
polynomial satisfies (5).

Since our goal istointerpolate the data giveroir G C €, this leads to the requirement
for solving

Uyxxx + Uyyyy = 0 in 2\D,

6
Ulw) =2,, aebD, ©

and in addition some natural boundary conditions, if necessary, to guarantee uniguene
u.

To discretize (6), we will approximate the derivatives by finite differences on the gr
G = 2N (h1z x hyz). The discretized differential operator should only be applied to th

nodes ofU = G\D as the interpolation conditions are to be fulfilled Dn This leads to
the N = #U equations

1 1
Z(H2)o + 5(V2e =0, aeU, (7)
hi h3
where the horizontal and vertical difference operatérandV are defined by
(H2)y = 74 oq1 — 424 _qr + 624 — 4Zy ot + Zgy21
and
V2o = 24292 — 42y g2 + 62y — 42 g2 + Zy 202
with direction vectorsi® = (1, 0)T andd? = (0, 1)7.
We will in the following assume that; = hy, in which case we might replace (7) by

(H2), + (V2, = 0. This leads to the definition of the difference operator,

(Pz)oz = (Hz)a + (Vz)o:; (8)
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i.e., P can be identified with a 9-point-difference stencil of the form

1
—4

1 -4 12 -4 1. 9)
—4
1

SinceG is a finite grid, the stencil has to be modified close to the boundaty. dfor
example, ifo € U anda + 2d* ¢ G, the horizontal operatdfl could be modified to

(HZ)O, = Zy 241 — 4Za7d1 + 5z, — 22a+d1,

and if alsoo + d* ¢ G, it would read

(H2)g = Zy—oqt — 22y gt + Z4.

These alterations correspond to a discretization of the natural boundary conditic
Uxxx = Uxx = 0 across a vertical boundary. Similar conditions can be posed.dfor
further details on such discretizations see [1, p. 137].

Given the above discretization of boundary conditions, together with mild restrictior
on the number and location of the nodesDn it is shown in [4] that the operatd? is
symmetric and positive definite on the space of grid functions supportddiie., for any
grid functionsu andv such thau, = v, = 0 for alla ¢ U we have

(Pu,v) = (u, Pv),
(Pu,u) >0, u=#0,

where (, -) denotes the Euclidean inner product. The conditions for positive definiteness
that there exist at least four nodedrthat are not zeroes of any bilinear function which is a
very weak condition. In fact, the results in [4] also cover the introduction of discontinuitie
in the grid function (faults) treated as internal boundary conditions toward the faults. Tht
corresponding discretizations always yield a system which is uniquely solvable.

Since P is symmetric, positive definite, and sparse, a natural approach for solving tl
linear equations (7) is to use some kind of iterative method like the conjugate gradie
iteration. Without preconditioning, this can be implemented simply by staring matrix
and applying the stencil (9) in order to perform the matrix—vector product, i.e., itis not
necessary to assemble the matrix. This is done in [3], where it is indeed observed in
computations that the number of conjugate gradient iterations grows very fast as a funct
of the size of the grid as predicted by the theory. In fact, for a sparse ddiaaad a fine
grid G, the spectral condition number &f is O(N?), whereN = #U. The convergence
rate of the CG method is then close to zero (cf. (13)), which means that there is hardly
improvement in each iteration step whignis large. WhileN is smaller and thus also the
condition number o when more dat® is given, the convergence rate also depends or
the distribution of the data which is reflected in the constant®{iN?). In view of this
observation, the model problem given in the next section is chosen such that all the giy
data is assembled around the boundary. Thus, the example is rather “ill-conditioned” in-
sense that the constants@(N?) will be quite large.
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3. AMODEL PROBLEM

Given an integen > 2, leth = 1/(n — 1). In the model problem we will use a domain
Q of the formQ = [—2h, 1+ 2h]? and we defin& = Q U hz2. Furthermore, let

D={xeG:a¢l0, 1],

and defindJ = G\D. ThenU consists oN = n x n nodes on a uniform grid covering the
unitsquare. The data nodBdie on two more outer grid lines parallel to the boundaries of th
unitsquare. The input data will be sampled from a test functidd ghus we do not consider
the regularization and approximation steps of the scattered data approximation algori
Neither do we consider derivative-type boundary conditions. The boundary conditions \
be of Dirichlet type, clamping the value and the cross boundary derivative of the solut
at the boundary.

With this setup we are able to study the effect of approximating scattered data ¢
containing regions with little data. Large valuesroére to be interpreted as large “holes”
in a scattered data set.

Let f be some test function and define

z, = f(a) foralla € D. (20)
To computez, for « € U we must solve the linear system
(P2, =H2,+V2,=0, «acU. (12)

In order to apply the equation solvers in the next section, we will need to formulate (11)
assembling the coefficient matrix. For this purposelet= —(Pz),, wherez, = f (a) if

a € D andz, = 0 otherwise. Then a grid functianwith z, = 0 for all@ € D solves our
problem if

(P9y =(H2)y +(V2)y =h,, aeU.

Enumerating the grid nodesrtically, beginning with the lower left corner &f, one obtains
a linear system of equations

Pz=(H+V)z=bh, (12)

where we keep the notatidd, H, andV for the correspondingl x N matrices. With the
vertical orderingV has a dense band of band width 5. ThatMshas two side diagonals
on each side of the main diagonal. It is also block diagonal with blocks ohsize, each
block corresponding to the one variable problem induced by a vertical grid line. The mat
H has band width & — 1). However, using &orizontalordering the situation foH and

V is reversed.

For the PCG methods used in the next section, the ordering is not of primary importa
since we will only need to perform matrix—vector products, and hence, we canktore
in a matrix format supporting sparse matrices. However, for the ADI method we will u
Cholesky factorizations of matrices relatedHoandV, and with the vertical ordering this
would create fill-in inH . To avoid this we will use a vertical ordering fgrand a horizontal
ordering forH in the implementation of the ADI method.
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4. SOLVING THE SYSTEM OF LINEAR EQUATIONS

4.1. Preconditioned Conjugate Gradient Methods

The convergence spedrl of the CG method (Algorithm 4.1 below wit@ = 1, the
identity matrix) depends on the spectral condition number
)\max(P) —4
k(P) = = 0O(h™), 13
(P)i= 22 5 = O™ (13)

whereimax(P) andinmin(P) are the maximal and minimal eigenvaluesRyfin such a way
that it slows down exponentially with decreasing grid spacing, i.e.,

B Je(P) -1

An example of this dramatic effect for the present situation is given in [3]. The fourth powe
of hin (13) relates to the fact that the differential operator in (8) is of order four.

It is therefore of primary importance to precondition the linear system, i.e., to repla
(12) by

CPz=Ch,

whereC is some symmetric positive definite matrix approximati?igt. One would callC

a “good” preconditioner foP if x(CP) « «(P) and if the matrix—vector produ@ P is

not too costly, typically of the same computational complefiyN) as for performingP z
Below we provide an outline of the preconditioned conjugate gradient method as it ¢

be found in, e.g. [12].

Algorithm 4.1. PCG method.

r < b— Pz z start vector
g<Cr

p<g

o< (9

residual_error <« m

while (residual error > error_wanted) {
o

o <«

(p, PP
Z<—Z+ap
r<r—oaPp
g <« Cr

Gnew <~ (r$ g)

Unew
B =t

O < Opew

p<g+8p

residual _error < 4/(I,I)
}

Here (, -) denotes as before the Euclidean inner product.
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In the examples in Section 5 we have €eto be the SSOR preconditioner, derived
from the classical successive overrelaxation iteration for symmetric matrices, and the R
preconditioner, based on incomplete factorization. For fourth-order problems, one exp
thenx (C P) = O(h~?). For more information on these and other types of preconditioner
see [8 or 12].

4.2. ADI Methods

An alternative approach to solve (12) which is somewhat different from the PCG mett
with SSOR or RILU preconditioner is motivated by the fact that the stencil (9) does r
contain mixed derivatives. The idea is to define an iteration based on the spiittiag
H + V, leading to the ADI method. The theory for the ADI method in this subsection, as
was developed for second-order problems, has been taken from the survey [6], where
all the proofs of the statements and a number of examples and computations (although
more than 30 years ago) can be found.

Introducing an iteration parameter> 0, we may write Eq. (12) as

Pz=(H+pl +V —pl)z=b

which gives the relations

z=N+p) - (H-ph)2),
z=H+pDH) -V -phH2).

Usually the matricesd andV are assumed to be symmetric and positive semi-definiti
For the model problem in Section 3 they are actually positive definite. Therefore, for ¢
p >0,V +pl andH + pl are positive definite and, consequently, their inverses are we
defined.

Adopting the notiorstationaryADI method from [12, p. 197], the procedure with a single
iteration parametes reads as follows.

Algorithm 4.2 (Stationary ADI method).

Zstart vector, p iteration parameter
r<—b— Pz
residual_error <« \/m
while (residual _error > error_wanted) {
z< (V+pD) b= (H=ph2)
Z<— (H+pHXb—(V —pl)2)
r<—b—Pz
residual_error < /(r,I)
}

By ordering the grid points vertically when assemblWgnd horizontally when assem-
bling H as mentioned before, both matrices will be pentadiagonal; i.e., they have the f
side diagonals directly adjacent to the main diagonal (band-width 5). The same orde
principles are used fad + pl andV + pl. The inverses oH + pl andV + pl are de-
termined by Cholesky decomposition ahead of the iteration loop. Since these are 5-bar
the decompositions are performed quickly without fill-ins.
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The application of the inverses inside the iteration loop are performed by forwarc
backward substitutions. Again by the 5-banded structure, these actiddsMj@®perations.

By using a vertical ordering of thN-vector, we must, however, reorder the vectors into a
horizontal ordering before an operation involvikgis performed.

It can be shown that Algorithm 4.2 converges for any fixed iteration parametelO
[6]. In fact, every stationary iterative methoad<« T x + b converges if and only if the
spectral radiusA (T) := max |A,(T)| of theerror reduction matrix TsatisfiesA(T) < 1,
wherei,(T) are the eigenvalues af (see, e.g., [11]). In Algorithm 4.2, one has =
(V+p) Y (H=pl)(H +pl)~(V — pl) for which it can be shown with arguments from
linear algebra that its spectral radius is less than one for any pogisireeH, V, andp|
are real symmetric positive definite matrices [6, p. 195].

According to [6], the optimal choice g@fdepends on the smallest and biggest eigenvalue
of H andV. In our implementation we computed these eigenvalues using power iteratio
(cf. [11]). It turned out that the eigenvalues could be found with very few iterations; in th
example in Section 5 three power iterations proved to be sufficient to determine satisfact
approximations to the maximum and minimum eigenvalues.

Now, denote byay, by anday, by the minimal and maximal eigenvaluesidfandV,
respectively. Define

E o= (bH —«/aHbH)<bV—\/aHbH>
Y7 \bn + vanby / \by + vanby /J°
F,— (vavbv _aH>(bV —vavbv>

Vavby +ay / \by +Vavby /

If F; < F, then the optimal choice for the iteration parameter is

p = \/auby; (15)
otherwise, one should set

p = +/ayby. (16)

With suchp, the convergence rate of the stationary ADI method, Algorithm 4.2, is then ¢
least

R=—logF, F :=min{F, F,}.

For the situation at hand of one-dimensional fourth-order differential operbit@sdV,
we typically have

ay ~ay ~ h4, bV ~ bH ~ 1. (17)
Here X ~ Y means that there exist constaoisc, independent of any parametetsor Y

may depend on such thatY < X < ¢,Y, andhis the grid spacing as in (13). Thys~ h?
with either of the two choices (15) or (16), and the convergence rate of the stationary A

method is then at least
¢ — hic c; — héc
R = —log 1 2 3 4
C1 + h2C2 C3 + hZC4
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with some constants,, ¢, c3, ¢s. Thus, ifh ~ 271 andj large, the speed of convergence
will be comparably slow. Tests for second-order problems performed in [6] show tt
the stationary ADI method behaves essentially like the classical successive overrelaxe
method.

However, the rate of convergence of ADI methods can be considerably improved by us
a possibly different iteration parameter in each iteration step (see [6 or 1, pp. 206—-21
Following again [12], we call the resulting procedureiastationary ADI method. The
algorithm for determining these parameters denoted now;, by = 1, ..., m, for some
fixedm e N can be formulated as follows and has to be done only once.

Algorithm 4.3 (Determination of iteration parameters).

1. Let a:=min{ay, ay} and b:=maxby, by} where an, av, by, by are the
minimal and maximal eigenvalues of H and V, respectively, and set

c= 6

2. Find the smallest integer msuch that

V2-1?<c. (18)
3. Determine pj, i =1,...,m, as
)\ @-D/2m
pi=b(5> . i=1...,m, (19)
or
a)\ (—D/m-1)
pi=b<b) , m>2 i=1...,m (20)

The parameters determined in (19) are caledceman—Rachford parametesgile the
ones in (20) are commonly referred to \A&chspress parametershese parameters are
now used successively in a cyclic order in the following procedure.

Algorithm 4.4 (Instationary ADI method).

i=1
Zstart vector, pj iteration parameter
r<—b-Pz

residual _error < /(r, r)

while (residual error > error_wanted) {
z<— NV +p)Hb—(H-p1)2
z< H+p) b=V —piD)2)

r<—b—-Pz
residual _error < /(r, 1)
i <—i+1

if il=m+1){
i=1
)}
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Remark 4.5. The instationary ADI method in Algorithrm converges provided that,H
V are positive definite and that they commut,

HV = VH; (21)

sed6]. For the model problem from Secti@mwhere the given data is assembled around the
boundarythis is indeedthe case for the corresponding H and V. When data is given insid
the domain to approximate.g. discontinuities across faulthe respective operators H and
V do not satisfy the commutativity condition any more. Howgrehe first corresponding
tests[20] the instationary ADI method still worked well and converged fast. This could b
an indication that this method may still be used practicaly long as the amount of data
in the interior does not force HV-V H to deviate from the zero matrix in too many places.
A corresponding theoretical and computational study will be reported elsewhere.

In Algorithm 4.4, the inversesV + pi1)~%, (H + p; 1)~ are determined exactly by
Cholesky decomposition of + pjl andH + p;| and can be computed ahead of the
iteration for each of the iteration parameters. However, for large systems this might
too costly with respect to storage. In this case the alternative would be to recompute th
factorizations at each iteration step. As is seen from the examples, the number of iterati
turns out to be not much larger tham hence, this could be a good alternative for large
problems. In the examples below we did precompute the factorizations.

The Wachspress parameters seem to be superior to the Peaceman—Rachford paran
in many cases [1, p. 209], and this holds true also for the present problem (cf. Section
The rate of convergence in this case is average for fixed

2. (1 20 DR\?
R= “m Iog(—1+ D) C)

Recalling (17) gives ~ h* for the fourth-order problem we are concerned with, so that
m > 3 yields already an improved rate of convergence, compared to the stationary A
method. In view of (18) which roughly corresponds td2 < h*in this case, a grid spacing
h ~ 271 yieldsm > 2j so thatm becomes bigger, the finer the mesh size is. For large
one hag™Y/c ~ /2 — 1, so that

2 35
R~ ——log(3—2v2) ~ —.
—log3—2v2) ~ —

This means that the convergence rate, on average, decreaseswghenws. However, as
is confirmed by Table 3, when the number of grid points in each coordinate direction
doubledmis only increased by one and, accordingly, the number of iterations grows ve

slowly.

Remark 4.6. In recent yearthere have been more investigations on the constructior
of optimal ADI-parameters for very genei@ut usually second-ordgproblems including
nonsymmetric differential operatqrsee e.g.[19].

5. COMPUTATIONAL RESULTS

These experiments are performed in the framework of the model problem discussec
Section 3. Initially, we considered several test functidné (10) sampled orD. The



ADI-SOLVER FOR SCATTERED DATA PROBLEMS 355

corresponding iteration counts were comparable for all the runs so that the interpola
values onD for the runs corresponding to the tables below are sampled from the quadr:
polynomial

f (X, y) = 3x% + 4y? 4+ 9xy + 6x + 8y

only. Sincef then satisfies the corresponding partial differential equation (6) exactly, v
are able to compare the numerical solutions to the analytic solution of the problem.
Define the discret&? norm by

1/2
lulln = (hZZLé) -

aelU

For all the runs the iterations are stopped wherkthaesidualk = b — P Z satisfies
Ir¥)in < 1072,

The number of iterations for a given run is denotedkhyWe choose® = 0 as the start
vector for the iterations for all runs.

Before the iteration loop starts for the ADI methods, the maximal and minimal eigenvalt
of H andV are determined by using three power iterations. In addition, the Choles
factorizations foH + p;j | andV + p; | are precomputed for each iteration parameter. Sinc
the work for one iteration of the PCG method and one iteration of the ADI method is r
directly comparable, we have estimated the total work involved for each of the methc
This work is designated in the numbergfflops, where on&-flop is the amount of work
required to perform one inner product.

In Table 1 we have compared the number of iterations and the numbésflops for
all methods. Good relaxation parameters for the preconditioners in the PCG method
determined experimentally. The values chosen are 0.955 for the RILU preconditioner
1.9 for the SSOR preconditioner. Note that the nunkhef iterations for the PCG methods,
as well as for the stationary ADI method, grows very fast as a function of the nukhber
of variables. However, for the instationary ADI method, where we have used Wachsp
iteration parameters, the number of iterations is low and grows at a very low rate. As |
be seen, the work load counted M+flops favors the instationary ADI method already

TABLE 1
The Number of Iterations (k.) and the Number of Inner Product Equivalents (N-Flops) Needed
to Fulfill the Stopping Criterion ||r¥||, <1073

PCG RILU PCG SSOR Stat. ADI Instat. ADI
N k. N-flops K. N-flops K. N-flops K. N-flops
100 16 384 20 480 57 2,127 10 536
400 36 864 37 888 183 6,537 13 659
1,600 93 2,232 77 1,848 * * 15 765

6,400 302 7,248 179 4,296 * * 18 888
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TABLE 2
The Error ||f — Z||, between the Analytic Solutionf and the Final Iterate 2

N PCGRILU PCG SSOR Stat. ADI Instat. ADI

100 27 x 10 40x 10* 50x 10* 3.7x 10*

400 13 x 1078 2.6 x 10°° 7.4 x10* 6.6 x 10~
1,600 11 x 1072 1.3x 102 * 5.1x10™*
6,400 14 x 10t 9.6 x 1072 * 15x 10

at N = 400, i.e., for a 20x 20 grid. The “” in the column for the stationary ADI
method means that this method would need more than 400 iterations to reach the tolere
I < 1072,

Table 2 shows the errdrf — Z||, between the analytic solutioh and the final iterate
Z“ for the runs in Table 1. We observe that the error is essentially bounded for the ins
tionary ADI method, while it increases for the PCG methods. Thus, eviarf fif, < 103
for all methods, the solutiog® looses accuracy with decreasingfor the PCG meth-
ods, while the accuracy is independenthadfior the instationary ADI method. This prop-
erty of the instationary ADI method is confirmed in Table 3. The reason for the grow
ing error in the PCG solution is that the preconditioned iteration marxC P is “ill-
conditioned” due to the type of data used. Therefore, the dmbr z* |, z* = P~ b,
need not be small even|if ||, = | P(z* — Z)||,, is small. This effect is not observed for
the instationary ADI method.

In Table 3 we have shown the results of running the instationary ADI method on larg
grids, using both the Peaceman—Rachford and the Wachspress parameters. The numt
iterations is low and essentially independent of the grid size for both parameter types. Al
the accuracy in the solution remains bounded as the grid size increases. Concluding
experiments, itis fair to say that these computational results are very good for a fourth-or
problem.

TABLE 3
Results of Running the Instationary ADI Method on Large Grids Using
the Two Types of Iteration Parameters

Peaceman—Rachford Wachspress
N m k. | f — 2% N-flops K, | = 2], N-flops
10,000 9 36 8 x 10 1,536 17 51 x 104 871
40,000 10 40 T x10° 1,694 21 1 x 103 1,029
90,000 11 44 B5x 1073 1,852 20 15 x 1073 1,012
160,000 12 46 B x 1073 1,940 22 % x 104 1,100
250,000 13 40 2x10° 1,748 23 D x 1073 1,153

Note The length of the cycles is denotedim(number of iteration parameters in Algorithm 4.3). The number
of iterations needed to fulfill the stopping criterigin®||, < 10°% is denoted byk,, and the number of inner
product equivalents is denoted biflops. In addition the table shows the erfidr — z||,, between the analytic
solution f and the final iterate*.
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6. CONCLUDING REMARKS

This paper discusses the application of preconditioned conjugate gradient method
well as a stationary and an instationary ADI method to linear algebraic equations stemn
from a finite difference discretization of the fourth-order elliptic partial differential equatic
Uxxxx+ Uyyyy = b. This equation is solved as part of a scattered data approximation sche
where it is used as a smoothing technique to fill in unknown values in a partially determit
grid. The particular form, not involving mixed derivatives, is used to make it easy to hant
discontinuity conditions connected to the scattered data problem.

The results illustrate that, for the problem considered here, the instationary ADI metf
is superior to the other methods, both with respect to the work involved and with resg
to accuracy of the solution. For the instationary ADI method the number of iterations
essentially independent of the grid size, a property not shared by the other solvers w
the number of iterations grows very fast as a function of the grid size. One needs to perf
more numerical experiments to confirm this for a wider class of model problems.

We remark that the use of the ADI methods is suggested by the fact that the stencil
does not contain mixed derivatives. If such terms are included to enforce smoothness o
surface also in other than the coordinate directions, the grid points could not be orderec
more in such a way that the matricdsandV are banded without many zeroes in between
One alternative to compute the Cholesky decompositioH afr V would then be to use
an iterative method like the conjugate gradient method instead for the updat@stbin
an ADI method. Another approach would be to siliinto several components, e.g. by
introducing ordering also along diagonals in the grid. Or, one could use one iteration of
ADI method with P given by (9) as a preconditioner for the PCG method applied to tt
operator with mixed derivatives.

In general, it is fair to say that the fast solution of large fourth-order problems is not
easy question. To avoid the requirement on the high regularity of the solution when
cretizing the problem (6) with a difference method, one usually rather employs a variatio
approach. Thus, an alternative would be to use finite elements in a Galerkin method
(4) combined with some approach to incorporate the known grid function values into |
problem formulation. Because of the dramatic effect of the condition humber for foul
order problems, a multilevel (see [9]) or multigrid preconditioner (see, e.g., [12]) whi
exists for these types of variational problems yielding@) growth-rate in a PCG method
is worth considering. The given data could be handled by appending them as side condit
by Lagrange multipliers as in [15] or by using a least-squares approach like in [7]. Howe\
in addition to the fact that these approaches are typically realized for second order probl
only, the construction of several grids of different grid spadimgth a consistent treatment
of the given data which a multilevel method could be based upon is not that straightforwe
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